
Architecture

Alex Sverdlov
alex@theparticle.com

1 Introduction

Architecture is the high-level design of the system. It helps to visualize the important
concepts or patterns of the system.

There are different kinds of architectures:

• Data Centric Architecture: the primary thing is the data, with all-sorts of components
accessing the data store.

• Data Flow Architecture: the primary thing is how data flows from one module to the
next—what transformations happen where and when.

• Call-and-Return Architecture: a hierarchy of components, the main program controls
a few sub-components which in turn may control other components.

• Object Oriented Architecture: components encapsulate data, communicate via mes-
sages (method calls).

• Layered Architecture: project/system is partitioned into layers, often with lower levels
handling more details than higher levels.

• Model-View-Controller: system is segregated into three primary modules/components:
the Model, handling business logic and storage. The View: handling UI interactions
and various ways of displaying model objects. The Controller: manager module that
connects users to the model.

There are also high level questions that must be addressed, such as where and how
are things controlled (does control pass from component to component, or do components
operate asynchronously).

Also important consideration during architecture design is: how is data passed from
component to component.

1

alex@theparticle.com


2 Designing Components

A component is a module with code. Often encapsulates business logic and hides data and
implmenetation details. Often deployable as a unit, and represents a replaceable part of
the system (can be replaced with another component with different implementation). Often
accessed via interfaces.

In object oriented view, a component is a set of classes that collaborate in some way to
solve a business problem.

Components should be open to extension, but close to modification. Easy to add func-
tionality, but not change how it behaves.

Design components/classes to be deep. The API should hide complexity—if you notice
that API is getting wide—a lot of API hiding relatively shallow implementation, rethink the
architecture.

2


