A Very Basic Introduction To Time/Frequency Domains

Particle

March 10, 2004

Abstract

A very brief introduction to waves, terminology, time/frequency domains, with a bit of mention of various transforms.

1 Introduction

In the context of communications, a signal is basically some information somehow encoded as a wave. Everything travels as a wave, so let's look at some of the simple ideas of that. Figure 1 presents a basic Sin wave.

The vertical axis is the volume, or air-pressure, or strength, or energy, etc., depending on what this wave is. For example, if this is an ocean wave, then the vertical axis may be the wave height. If this is a sound wave in the air, then it is the air-pressure. If it is the sound wave in a wire, then it's the voltage.

The horizontal axis (here depicted in terms of π) often represents the time or distance (or space) that the wave traverses in.

Waves generally have a period, which can be viewed as the time/distance of when the wave repeats itself-starts the next iteration. In Figure 1 the period is 2π.

A closely related property of the period is the frequency. Frequency is the speed at which the wave cycles its periods, and is always expressed in proper speed units, as in 'cycles per second' (commonly known as Hz), and 'kilo-cycles per second' (commonly known as kHz$)^{1}$.

[^0]

Figure 1: Analog Sin Wave.

2 Time Domain

Figure 2: 4 Hz Sin Wave; $\sin (2 \pi 4 t)$

Figure 2 illustrates a Sin wave at 4 Hz . Notice that the horizontal axis is now time, and is expressed in seconds. You can count the number of times the wave cycles, and you'll see that it's 4 , ie: 4 Hz .

Given the frequency, you can easily find the wave period. For example, if the wave cycles itself 4 times per second, then the period is $\frac{1}{4}$ seconds, or simply $1 /$ Frequency. Similarly, knowing the period, you can find the frequency.

Another closely related value is the wavelength, which is basically the distance occupied by the wave period. Given the speed of propagation (light in a vacuum, or sound in the air, etc.), we can calculate that too. For example, light/electricity travel around 3×10^{8} meters per second. Let's imagine that Figure 2 represents electricity in a wire, then the wavelength is just $3 \times 10^{8} \div 4$ or just 7.5×10^{7} meters, or simply velocity \div frequency. Obviously you can find velocity if you know the wavelength and frequency.

Figure 3: 12 Hz Sin Wave; $\frac{1}{3 \sin (2 \pi 12 t)}$
Continuing on with the discussion, Figure 3 shows a wave of 12 Hz , and with $\frac{1}{3}$ amplitude. Notice how the period got smaller as the frequency increased.

3 Frequency Domain

Figure 4 illustrates the idea of taking two waves and adding them together. In this case, we've added waves from Figures 2 and 3.

There are primarily two ways of viewing any type of a wave; in the time domain, or in the frequency domain. The frequency domain of Figure 4 might

Figure 4: $4 \mathrm{~Hz}+12 \mathrm{~Hz}$ Sin Wave.
look something like Figure 5.

Figure 5: Frequency Domain of $4 \mathrm{~Hz}+12 \mathrm{~Hz}$ Sin Waves.

4 Applications

It turns out that viewing waves in frequency domain is usually a lot more useful than viewing them in the time domain.

5 Discrete Fourier Transform

$$
H_{n}=\sum_{k=0}^{N-1} h_{k} e^{2 \pi i k n / N}
$$

6 Inverse Discrete Fourier Transform

$$
h_{k}=\frac{1}{N} \sum_{n=0}^{N-1} H_{n} e^{-2 \pi i k n / N}
$$

7 2D Discrete Cosine Transform

JPEG, etc:
$D C T(i, j)=\frac{1}{\sqrt{2 N}} C(i) C(j) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \operatorname{Pixel}(x, y) \operatorname{COS}\left[\frac{(2 x+1) i \pi}{2 N}\right] \operatorname{COS}\left[\frac{(2 y+1) j \pi}{2 N}\right]$
Where $C(x)=\frac{1}{\sqrt{2}}$ if x is 0 , else 1 if $x>0$.

8 2D Inverse Discrete Cosine Transform

$\operatorname{Pixel}(x, y)=\frac{1}{\sqrt{2 N}} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} C(i) C(j) D C T(i, j) C O S\left[\frac{(2 x+1) i \pi}{2 N}\right] \operatorname{COS}\left[\frac{(2 y+1) j \pi}{2 N}\right]$
Where $C(x)=\frac{1}{\sqrt{2}}$ if x is 0 , else 1 if $x>0$.

9 Conclusion

In class: How JPEG works.

[^0]: ${ }^{1}$ Naturally 'kilo' stands for 1000 , so if something is 8 kHz , then it's 8000 Hz .

