1 Introduction

- Quality has different meanings.
- Car analogy: luxury car vs everyday car.
- Quality management planning:
 - Define qualty standards
 - Document process, metrics, and tools.
 - Define how compliance to standards will be met.

• Quality Assurance:

- Audit quality processes, policies, metrics and tools to ensure they are followed.
- Ensure quality processes have right impact.

• Quality Control:

- Collect data
- Analyze
- Make changes as needed
- Ensure acceptance of project eliverables.

• Continuous Improvement

- Identify lessons learned.
- Revise and make improvements to quality plan.

• Cost of defect may include:

- Time and effort spent investigating and diagnosing the defect.
- Time and effort redesigning, developing, and re-testing the defect.
- Time and effort if re-resting uncovers new defects.
- Loss of good-will if defect is found by a customer.

• Quality Philosophies

- Craftsmanship: masters, apprentices, journeyman
- Scientific Management: breaking down the task into few steps can be performed with little training.
- Total Quality Management:

- * Trained workers empowered to monitor and control quality of items they produced.
- * Don't rely on mass inspections at end of project.
- * Build quality into the process.
- * Train and educate people, and let them take pride in their work.
- * Eliminate slogans, work-quotas, and management by numbers.
- * Quality is the responsibility of everyone in the organization.

Quality Planning

- * Identify customer
- * Determine customer's needs
- * Understand those needs
- * Develop a product that meets customer's needs
- * Ensure that the product meets the customer's needs as well as the organization.

- Quality Improvement

- * Design the process that can produce the product.
- * Optimize that process

- Quality Control

- * Provide evidense that the process can produce the product.
- * Operationalize the process

- Capability Maturity Model (CMM)

- * Developed in 1986 by Software Engineering Institute (SEI)
- * Recommended processes specific to software development.
- * Process: A set of activities used by people to develop a product.
- * Process capability: expected result that can be achieved by following a process.
- * Process performance: actual results that are achieved by following a particular process.
- * Process maturity: The extent to which a particular process is explicitly and consistently defined, managed, measured, controlled, and effectively used throughout the organization.
- * 5 levels of maturity:
 - · Level1: Initial: project process is ad-hoc and immature.
 - · Level2: Repetable: basic policies, processes, and control of project management are in place. Project schedules/budgets are more realistic.

- · Level3: Defined: Engineering and management processes are documented and standardized throughout the organization. A group oversees that the standards are followed.
- · Level4: Managed: quantitative metrics for measuring and acessing productivity and quality are established for both products and processes.
- \cdot Level 5: Optimizing; the whole organization of focused on continuous process improvement.
- Focus on customer satisfaction
- Prevention, not inspection.
- Improve the process to improve the product.
- Quality is everyone's responsibility
- Fact-based management