Meta-Models & Naive Bayes

Alex Sverdlov
alex@theparticle.com

1 Introduction

A model may also be constructed from a set of other models, where the output category is
determined by an aggregate or majority vote of constituent base models (those that are not
an ensemble of other models).

Often this collective makes much better decisions than individual models. The basic idea
is that each sub-model is different from the rest: if they were all the same, they would all
produce the same result. This difference often comes about by training each sub-model on
a different sub-sample of the training data.

When building such ensembles we have a choice of what base classifiers to use, and
how to split the training among them. There are two popular mechanisms of constructing
meta-models: bagging and boosting.

Bagging creates multiple training sets by randomly sampling the original training data.
There are several versions of this, sampling with replacement and without. For practical
reasons (big data, distributed across multiple machines), the most common application is
to ensure data is sufficiently randomized (shuffled), then just cut the training dataset into
N non-overlapping partitions. The N classifiers (trained on N respective datasets) become
the ensemble classifier. This allows for parallel training of the N models, as there are no
dependencies between base classifiers.

Boosting is essentially sequential bagging, where each step creates a classifier, based on
data that has been re-weighted by previous steps. The misclassified instances are given
higher weight, so future iterations work harder to get those instances correct.

An alternate view is to sample features, instead of training instances. A sort of bagging
of features, where each base classifier gets a subset (perhaps a random subset) of features
to train on. This is often called the sub-space method, or feature bagging. Conceivably any
base classifier can be used on such sub-sets of features (just as with ordinary bagging and
boosting), but having direct control of the number of input features allows us to choose the
simplest of base “classifiers”: a table lookup.

The question of how to combine the results of such ensembles leads us to explore why
such ensembles often work in the first place, and the key to that is naive Bayes.

Thomas Bayes (1702-1761) introduced a new form of statistical reasoning—the inversion

alex@theparticle.com

of probabilities. We can view it as
Posterior = Likelihood x Prior

where Posterior is the probability that the hypothesis is true given the evidence. Prior is
the probability that the hypothesis was true before the evidence (an assumption). Likelihood
is the probability of obtaining the observed evidence given that the hypothesis is true.

The Bayes rule codifies exactly what happens when evidence (or input data) is ob-
served. Before invoking our classifier, there is a certain probability of seeing each category:
P(category). After seeing the input instance, let us call it evidence;, we wish to determine
the category given the input instance data. The Bayes rule says the answer is:

P(evidencey|category) P(category)

P(category|evidence;) = P(evidence;)

Notice that both P(category) and P(evidence;|category) can be estimated from training
data (just count the conditionals), and the denominator P(evidence;) is only there to ensure
probabilities sum to 1.

Suppose we next observe evidences and evidences, etc. Under certain assumptions, we
can just continue to chain the Bayes rule and refine the probability of category given all
these pieces of evidence

P(evidences|category) P(category|evidence)

P(category|evidences) = P(evidences)

or more generally, making conditional independence assumption:

N .
P(evidence;|categor
P(category|evidencey, . .., evidencey) = P(category) H ([category)

%

P(evidence;)

See Section 2 for the derivation that makes this possible. The certain assumptions mentioned
are the conditional independence of evidence given category. If all the evidence is highly
dependent, then this sort of chaining will produce bad results. If evidence is mostly (but
not perfectly) independent, then the results of such chaining are generally good—each piece
of evidence moves us in the right direction, so the more evidence we observe the better our
prediction of the category. This is actually the idea behind Naive Bayes classifier.

The above suggests that to combine multiple ensemble results we should convert the result
of each base classifier into a probability, and then multiply them together for the final answer
(apply Naive Bayes). Alternatively, to avoid floating point precision issues associated with
multiplying lots of small probabilities, we can aggregate logs!. Often the exact probabilities
are not important, just their relative scale—at which point simply aggregating the results of
constituent classifiers often works best, and is actually optimal [KHDMO8|, keeping in mind
the same assumptions as for Naive Bayes.

1a x b= eXplog a+log b

2 Naive Bayes Classifier

We can use the Bayes rule to construct a classifier. The input features x1, ..., z, and target
class C form a joint probability distribution P(xq,...,z,,C).
Training might involve building a table to estimate P(zy,...,z,|C), and classification

would just be:
P(xy,...,2,|C)P(C)

P(xy,...,x,)

The problem with the above is the large joint probability. It is not practical: for large
n, we cannot store n dimensional arrays to do aggregates, nor will we have enough data to
populate such large tables with meaningful counts.

Using the chain-rule to rewrite P(xq,...,z,,C) we get:

P(xy1,...,2,,C) = P(x1|xa,...,2,,C) X P(x3|23,...,2,,C) X -+ X P(2,|C) x P(C)

P(Clzy,...,x,) =

If we assume that all z; are only dependent on C' (and not on other z;), by chain-rule
the above becomes:

P(zy,...,2,,C) = P(21]C) x P(23]C) x --- x P(x,|C) x P(C)

or
P(zy,...,2,,C) = P(C) [[P(x:]C)
i=1
Since 1, ..., x, is the observation, we can treat P(zy,...,z,) as constant. This means
that :
P(Clzy,...,z,) = K x P(C) [[P(x:]C)
where K is a place holder for a constant 1/P(z1,...,x,). This is the constant that makes

probabilities sum to 1, and we do not actually need it for a classifier.
The naive Bayes classifier is just:

n

= argmax P(c) H P(z;|c)

ceC i1

or to avoid floating point precision problems:

y = argmax log P(c) + Z log P(x;|c)
ceC i1

Notice that in this formulation, training is only required to estimate P(x;|C) and P(C)
which is trivial to do from training data.

A wonderful paper on why this often works is: “Idiot’s Bayes - not so stupid after all?”
by Hand & Yu [HYO01]. A very notable application of this approach is found in almost all
spam filters [SDHHO9S].

References

[HY01]

[KHDMO8]

[SDHHOS]

David J. Hand and Keming Yu. Idiot’s bayes: Not so stupid after all? Inter-
national Statistical Review / Revue Internationale de Statistique, 69(3):385-398,
2001.

Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combining
classifiers. IEEE Trans. Pattern Anal. Mach. Intell., 20(3):226-239, March 1998.

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian
approach to filtering junk E-mail. In Learning for Text Categorization: Papers
from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report
WS-98-05.

