
1 Spark Primer

Hadoop revolutionized how big data is processed. It did that primarily with HDFS and
MapReduce. HDFS provided storage and MapReduce provided compute capability.

Each MapReduce step would pick up data from HDFS, and end up with data in HDFS.
This made the system very resilient—HDFS maintains replica copies of blocks in case some
machines go bad.

All that reading and writing to disk is slow—especially for intermediate results that are
not required to be saved.

Another issue was that in a large job, the results of some steps are not retained, or are
used multiple times. There’s value in high-level optimization that a sequence of MapReduce
jobs just doesn’t make easy.

Here enters Spark: it’s a compute engine. Instead of working in map-reduce steps, it
operates on in-memory data structures called RDDs and more recently Datasets (which are
just special kind of RDDs).

Spark attempts to juggle the entire computation in memory, and only flush to disk the
output (or intermediate steps if memory is low). This makes Spark fast. Much faster than
most map-reduce sequences, especially those with multiple steps.

Spark is also lazily evaluated. What that means is that if nobody asks for a particular
output of a computation, then that computation will not be performed (even if it’s defined
in the code).

With Datasets, Spark got a higher level optimizer. Optimizations that you generally
expect out of a relational database are now available within Spark.

2 Before you start

Spark is written in Scala. It’s a functional language that’s somewhat loosely based on Java.
It’s not Java. But some of the libraries are shared. I highly recommend installing Scala—
mostly because the Spark API is much cleaner in Scala.

This is similar to instaling java on your computer, so head over to https://www.scala-lang.org/
and grab it.

If you’re running debian based linux, you can just run:

sudo apt-get install scala scala-doc

That said, Spark isn’t Scala. You can use Spark from Java or Python.

3 Downloading Spark

Grab the latest version from: http://spark.apache.org/
As of this writing, I found: spark-3.2.0-bin-hadoop3.2.tgz
You can unzip that into your home folder:

tar -xzf ~/Downloads/spark-3.2.0-bin-hadoop3.2.tgz

ln -s spark-3.2.0-bin-hadoop3.2/ spark

1

This created /home/alex/spark-3.2.0-bin-hadoop3.2. We also have /home/alex/spark
symbolic link pointing to the longer path.

Now define a variable SPARK HOME to point to it. At the top of ~/.bashrc, add:

export SPARK_HOME=/home/alex/spark

export PATH="$SPARK_HOME/bin:$PATH"

4 Running Stuff

You should now be able to run spark shell:

spark-shell

From here, you can type in whatever Spark commands you like.
Believe it or not, you can do just about everything you want from this spark-shell

terminal. Kind of like you can do everything with PostgreSQL from psql terminal.

5 Running Fully Distributed Spark

The above section illustrated how to run local spark—it will use all the machine’s cores, but
won’t talk to other machines across the network.

TODO: write up the configuration for this. It’s all controlled from files in SPARK HOME/conf,
and there are templates for each.

One good addition is to make symbolic links in SPARK HOME/conf that reference local
Hadoop instalation; to enable Spark to read HDFS, e.g.:

ln -s $HADOOP_HOME/etc/hadoop/core-site.xml $SPARK_HOME/conf/core-site.xml

ln -s $HADOOP_HOME/etc/hadoop/hdfs-site.xml $SPARK_HOME/conf/hdfs-site.xml

ln -s $HIVE_HOME/conf/hive-site.xml $SPARK_HOME/conf/hive-site.xml

6 Compiling your first program:

I highly recommend working within spark-shell to solve problems. It’s interactive, iter-
ative, and is an awesome environment to inch your way towards a solution to a business
problem.

For production environments such code may not be an option. You might need to create
a build that can be deployed on a cluster.

Create a Test.scala file (this is a simple app example by googling):

import org.apache.spark.sql.SparkSession

object Test {

def main(args: Array[String]) {

val logFile = "/home/alex/spark/README.md"

2

val spark = SparkSession.builder.appName("TestApp").getOrCreate()

val logData = spark.read.textFile(logFile).cache()

val numAs = logData.filter(line => line.contains("a")).count()

val numBs = logData.filter(line => line.contains("b")).count()

println(s"Lines with a: $numAs, Lines with b: $numBs")

spark.stop()

}

}

We now need to setup the CLASSPATH:

export CLASSPATH=".:$CLASSPATH:"‘find $SPARK_HOME/jars|tr "\n" ":"‘

This brings all jars from spark folder into CLASSPATH. Now compile via:

scalac Test.scala

This creates a bunch of files:

$ ls

Test$$anonfun$1.class

Test$$anonfun$2.class

Test.class

Test$.class

Test.scala

You can now create the jar with (apparently Spark ignores the manifest file (?)):

jar -cvMf Test.jar Test*

Then can just kick it off from command line using local machine as cluster:

spark-submit --class Test --master local[*] Test.jar

If you want to see the output without any logging, just redirect stderr to /dev/null

$ spark-submit --class Test --master local[*] Test.jar 2>/dev/null

Lines with a: 61, Lines with b: 30

7 Start Spark Service

To start the spark service, run:

$SPARK_HOME/sbin/start-all.sh

On my machine, this starts the spark master at: spark://electron:7077

3

8 Spark SQL

There’s also spark-sql command line program, which lets you run SQL using the spark
engine. The table definitions are sourced from Hive metastore.

There’s also a Spark Thrift server, to allow JDBC connectivity to Spark SQL. To start
the service run:

$SPARK_HOME/sbin/start-thriftserver.sh \

--hiveconf hive.server2.thrift.port=10001 \

--hiveconf hive.server2.thrift.bind.host=electron \

--master spark://electron:7077

The JDBC driver org.apache.hive.jdbc.HiveDriver is found in:

$HIVE_HOME/jdbc/hive-jdbc-3.1.2-standalone.jar

The JDBC connection url is:

jdbc:hive2://electron:10001/default

SQLRunner properties:

spark_user=alex

spark_pass=

spark_dbname=default

spark_host=electron

spark_port=10001

spark_url=jdbc:hive2://&&host:&&port/&&dbname

spark_driver=org.apache.hive.jdbc.HiveDriver

4

