
Fitting points to lines

Alex S.∗

1 Least Squares

The gist of the process is: we define a model and a loss function that measures how well
our model fits the data. We then minimize (by solving a system of linear equations) the loss
function over model parameters, thus finding a model (plane) that fits the data well.

Let us define our model fw1,...,wN
as:

f(x) =
N∑
i=1

wixi

In other words, our model is a hyperplane in N -dimensions. If we assume exact training
data S, we have:

Xw = y

We can solve this for w by solving a system of linear equations. Unfortunately real world
data generally has sampling errors, and wouldn’t perfectly fit a hyperplane (and we wouldn’t
be able to solve Xw = y for w). We can represent the error with ξ:

ξ = y −Xw

If this error is normally distributed1, then we can use the least squares method to solve for
w. We start by defining the least squares loss function2:

L(w1, . . . , wM) =
L∑
i=1

(yi − fw1,...,wM
(xi))

2

∗alex@theparticle.com
1Often, when error appears to be normally distributed, it is really log-normally distributed.
2The least squares loss function is derived from an assumption that the sample data set S is generated by

a smooth function with Gaussian noise. The probability of the sample data S, is a product of probabilities
of individual points, which is proportional to

P ∝
L∏

i=1

e
− 1

2

(
yi−fw1,...,wM

(xi)

σ

)2

where σ is the sample data standard deviation, which we assume to be constant. Maximizing this probability
is equivalent to minimizing the negative of its logarithm, which is equivalent to the sum of squares loss
function.

1

This is essentially ξ2, i.e.:
(y −Xw)T (y −Xw)

To find where L is lowest, we take its derivative with respect to w and set that derivative
to 0. We end up with N equations of the form:

0 =
L∑
i=0

[
yi −

N∑
j=1

wjxij

]
xik

for k = 1, . . . , N . Rewriting this leads to what are called normal equations:

N∑
j=1

αkjwj = βk

where:

αkj =
N∑
i=1

xijxik and βk =
N∑
i=1

yixik

In matrix notation, the above is:

XTXw = XTy which leads to: w = (XTX)−1XTy

We often add λI to XTX to ensure the inverse exists:

w = (XTX + λI)−1XTy

This is what is known as a primal form. Every linear problem with N variables and M
constraints has a corresponding dual problem with M variables and N constraints. One is
in some sense a transpose of the other. It is sometimes computationally convenient to solve
the dual problem instead of the primal.

The dual solution first computes what is known as a Gram matrix. For a set of vectors
v1, . . . , vn, the Gram (or Gramian) matrix is a symmetric matrix of inner products, where
each entry Gij = vi · vj. In matrix form, this is simply XXT . We then define:

α = (XXT + λI)−1y

Where α are Lagrange multipliers. To get w as in the primal solution we use:

w = XTα

The major difference between these methods is that the primal operates on XTX while dual
operates on XXT . The size of XTX grows with dimensions, while the size of XXT grows
with the number of inputs. If X is N by M matrix, then for N > M , it becomes more
efficient to do primal method, and for N < M to do the dual method.

2

2 Example

Lets do an example: find a line that passes through points (2, 13) and (3, 17). We need to
solve for a and b in the below equations:

2a+ b = 13

3a+ b = 17

Such things are easier to write in matrix form:[
1 2
1 3

] [
b
a

]
=

[
13
17

]
What we have is a classic equation: Xw = y, where we need to solve for w. Rearranging

things a bit, we end up with two solutions for w

w = (XTX)−1XTy

w = XT (XXT)−1y

With these, we learn that w is: [
5
4

]
In other words, the line is: 4x+ 5 = y. Octave code for above:

X = [1 , 2 ; 1 , 3]
y = [13 ; 17]
w = inv (X’∗X + eye (2)∗0 . 001)∗X’∗ y

We can use this method to solve any such linear system! Let us do a slightly more
complicated example: find a line that passes through points (2, 13), (3, 17), (5, 23), (7, 29),
(11, 31), (13, 37). We need to solve for a and b in the below equations:

2a+ b = 13

3a+ b = 17

5a+ b = 23

7a+ b = 29

11a+ b = 31

13a+ b = 37

Rewriting in matrix form:
1 2
1 3
1 5
1 7
1 11
1 13

[
b
a

]
=

13
17
23
29
31
37

3

Plugging in solutions for w, we get: [
11.4437
1.9836

]
In other words, the line is approximately: 1.9836x+ 11.4437 = y. Notice that this line does
not fit any of the points perfectly, yet it approximately fits all of them! Octave code for
above:

X = [1 , 2 ; 1 , 3 ; 1 , 5 ; 1 , 7 ; 1 , 11 ; 1 , 13]
y = [13 ; 17 ; 23 ; 29 ; 31 ; 37]
w = inv (X’∗X + eye (2)∗0 . 001)∗X’∗ y

So why the two solutions? The XTX, or primal solution, needs to invert a 2× 2 matrix,
while the XXT , or dual solution, needs to invert a 6 × 6 matrix—in this case, doing the
primal solution is much faster. For situations when we have few points in many dimensions,
solving the dual solution is often faster. For example: 1 2 3 5 7

1 3 5 7 11
1 5 7 11 13

 c
b
a

 =

 1
−1

1

Solving for w is much simpler via the dual method (XXT) as it only requires inverting a
3×3 matrix, and not the 5×5 matrix required by the primal (XTX) solution. The solution
by either method is

1.627295
−0.075596
−1.320899
1.476102
−0.556916

Notice that the above isn’t a line; but a hyperplane! Octave code for dual solution above:

X = [1 , 2 , 3 , 5 , 7 ; 1 , 3 , 5 , 7 , 11 ; 1 , 5 , 7 , 11 , 13]
y = [1 ; −1; 1]
w = X’∗ inv (X∗X’ + eye (3)∗0 . 001)∗ y

3 Fitting Polynomials

Without any changes, the above method can be used to fit n-degree polynomials. The input
matrix X is setup with rows like: [

x0, x1, . . . , xn
]

For example, using just x0 fits a 0th degree polynomial, which is essentially y = C, where
C is some constant. The 1st degree polynomial is a straight line, y = Ax + C, 2nd degree
polynomial is y = Ax2 +Bx+ C, which is a parabola, etc.

4

For example, instead of X as
1 2
1 3
1 5
1 7
1 11
1 13

which would fit a line, you can fit a 3rd degree polynomial just by tweaking that matrix to
be:

1 2 22 23

1 3 32 33

1 5 52 53

1 7 72 73

1 11 112 113

1 13 132 133

The resulting solutions will have the form y = D + Cx+Bx2 +Ax3. This can be extended
to any degree polynomial you care to fit.

4 Fitting non-linear functions

Now for a bit of magic: this linear method can fit non-linear functions, via the process of
embedding. For example, if you want to fit y = BeAx, we can take log of both sides to get
ln(y) = Ax + ln(B), which is linear (notice that it has the form of y = Ax + B). Now you
simply use that form in X and y and what you’re fitting will be the non-linear y = BeAx.

Similarly, to fit power function y = B ∗ xa you can take log of both sides to get ln(y) =
ln(B) + a ∗ ln(x), which is now also linear.

This embedding is very powerful; the general approach is “kernel methods”. The idea is
to embed your non-linear data into some higher dimensional space that perhaps has linear
structures, and then use a linear solver.

5

