
Backpropagation

Introduction

Neuron

A neuron is essentially a big formula. Often it computes a linear combination of inputs, plus
a bias, followed by a threshold funtion.

Suppose neuron weights (parameters) are: w1, w2, . . . , wN , and bias as b, and we wish to
use ReLU as activation function.

To calculate the neuron output on inputs x1, x2, . . . , xN we would compute:

N1(X) = ReLU(w1 ∗ x1 + w2 ∗ x2 + · · ·+ wn ∗ xn + b)

where X = x1, . . . , xn, etc.

Layer

A neural network layer is a lot of neurons operating on the same inputs; for example, a layer
with 32 neurons would be:

L1(X) = (N1(X), N2(X), . . . , N32(X))

Network

Layers are often composed, such as output of one layer goes as input into another. A five
layer network might look something like this:

output = NN(X) = L5(L4(L3(L2(L1(X)))))

Obviously the inputs-and-outputs of each layer have to be compatible, and the output car-
dinality is determined by the last layer.

Expanding that output into the component xi and wi would result in a huge formula.

Training

All the weights and biases (the wis and bs) of all the neurons in a network are called the
parameters, and are often denoted as θ. Training is the process of updating the parameters
to minimize some error/loss function.

For a dataset D of n labeled instances, such as:

D = ((X1,y1), (X2,y2), . . . , (Xn,yn))

the loss function might look like:

Loss(θ,D) =
∑
d∈D

(NNθ(d.X)− d.y)2

Note that Loss is a big formula. Backpropagation is a mechanism of calculating the derivative
of each parameter with respect to this function.

1



Derivatives

A derivative measures a rate of change with respect to the inputs. It is a function. For
example, a function f(x) = 2x + 7 has derivative of f ′(x) = 2, meaning the function grows
at a rate that is twice the rate of the input.

Often what we care about in machine learning is the gradient, which is the value of a
derivative evaluated at a particular input. For function f(x) = 3x2 + 4x the derivative is
f ′(x) = 6x+ 4, and the gradient at x = 2 is 6 ∗ 2 + 4 = 16.

Addition

Suppose our function is: f(a, b) = a+ b.
What is the gradient for a with respect to f(a, b)? If we increase a by 1, how much will

f(a, b) increase by? Answer: 1.
What is the gradient for b with respect to f(a, b)? If we increase b by 1, how much will

f(a, b) increase by? Answer: 1.

Multiplication

Suppose our function is: f(a, b) = a ∗ b.
What is the gradient for a with respect to f(a, b)? If we increase a by 1, how much will

f(a, b) increase by? Answer: b.
What is the gradient for b with respect to f(a, b)? If we increase b by 1, how much will

f(a, b) increase by? Answer: a.

Chain Rule

Wikipedia: As put by George F. Simmons: “If a car travels twice as fast as a bicycle and
the bicycle is four times as fast as a walking man, then the car travels 2 × 4 = 8 times as
fast as the man.”

In other words, if we are dealing with gradients, we can just multiply them. For example:

a = w1 ∗ x1 (1)

b = w2 ∗ x2 (2)

y = a+ b (3)

The gradient for a is 1.0, since adding 1 to a will increase y by 1. So we can set a.grad = 1.
Same reasoning for b.

What is the gradient for w1? From multiplication section above, the gradient of a with
respect to w1 is x1. To find out the gradient of y with respect to w1 we need to multiply all
the gradients in the path from y to w1, or w1.grad = x1 ∗ a.grad.

To calculate the gradient for every parameter (e.g. wis, etc.), we need to run the network
forward (the forward-pass) to calculate all the intermediate values. We then propagate the
gradients backwards through the network (the backprpagation), to calculate a gradient for
every parameter.

2



Gradient Descent

Gradient descent is an otimization (miminization) process, where we iteratively calculate/es-
timate the gradient at an input W = w1, . . . , wn, and nudge it into direction of negative
gradient

wi = wi + λ ∗ −wi.grad

where λ is called the learning rate, and is often set to a small number, such as 0.001 (though
controlling the learning rate, such as setting it to a larger number in the beginning and
decreasing it towards the end of training is also common).

Autograd

Calculating the gradient can be done manually. What contributed to a recent AI explosion
are software packates that support automatic differentiation (or more precisely, automatic
gradients: autograd).

This is often accomplished by keeping track of the parse-tree for an expression—that way
the parents of every operation can be kept track of. For example, a+b, operation is addition,
with parents a and b.

Forward

Given an expression, and values for all variables, we can order topologically order them in
a way where parents of every operation are visited before the children are calculated. Then
we can simply calculate the values of each operation. e.g. if operation is a plus, then add
the parents.

Backward

We order all operations such that the descendents of each operation is visited before the
parents (reverse of the forward pass). We start off the outout gradient with 1.0. Then for
every operation we calculate the gradient for the parents, and multiply by the gradient of
the child.

See PyTorch API documentation for more details.

3


